Mengenal Logaritma

 Logaritma

A. Pengertian Logaritma

Logaritma adalah suatu invers atau kebalikan dari pemangkatan (eksponen) yang digunakan untuk menentukan besar pangkat dari suatu bilangan pokok. Jadi intinya, dengan mempelajari logaritma kita bisa mencari besar pangkat dari suatu bilangan yang diketahui hasil pangkatnya. Jika sebuah perpangkatan ac = b, maka dapat dinyatakan dalam logaritma sebagai:

alog b = c

dengan syarat a > 0 dan a≠1

logaritma dan sifat-sifatnya

Berikut adalah sejumlah contoh logaritma: 
PerpangkatanContoh Logaritma
 21 = 22log 2 = 1
 20 = 12log 1 = 0
 23 = 82log 8 = 3
2-3 = 82log  = – 3
 9^{\frac{3}{4}} = 3 \sqrt{3}9log 3 \sqrt{3} = \frac{3}{4}
 103 = 1000log 1000 = 3

B. Sifat-sifat Logaritma

1. Sifat Logaritma dari perkalian

Suatu logaritma merupakan hasil penjumlahan dari dua logaritma lain yang nilai kedua numerus-nya merupakan faktor dari nilai numerus awal. Berikut modelnya:
alog p.q = alog p + alog q
dengan syarat a > 0, a \ne 1, p > 0, q > 0.

2. Perkalian Logaritma

Suatu logaritma a dapat dikalikan dengan logaritma b jika nilai numerus logaritma a sama dengan nilai bilangan pokok logaritma b. Hasil perkalian tersebut merupakan logaritma baru dengan nilai bilangan pokok sama dengan logaritma a, dan nilai numerus sama dengan logaritma b. Berikut model sifat logaritma nya:
alog b x blog c = alog c
dengan syarat a > 0, a \ne 1.

3. Sifat Logaritma dari Pembagian

Suatu logaritma merupakan hasil pengurangan dari dua logaritma lain yang nilai kedua numerus-nya merupakan pecahan atau pembagian dari nilai numerus logaritma awal. Berikut modelnya:
dengan syarat a > 0, a \ne 1, p > 0, q > 0.

4. Sifat Logaritma Berbanding Terbalik

Suatu logaritma berbanding terbalik dengan logaritma lain yang memiliki nilai bilangan pokok dan numerus-nya saling bertukaran. Berikut modelnya:

alog b = \frac{1}{^b log a}

dengan syarat a > 0, a \ne 1.

5. Logaritma Berlawanan Tanda

Suatu logaritma berlawanan tanda dengan logaritma yang memiliki numerus-nya merupakan pecahan terbalik dari nilai numerus logaritma awal. Berikut modelnya:

alog \frac{p}{q} = – alog \frac{q}{p}

dengan syarat a > 0, a \ne 1, p > 0, q > 0.

6. Sifat Logaritma dari Perpangkatan

Suatu logaritma dengan nilai numerus-nya merupakan suatu eksponen (pangkat) dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi bilangan pengali. Berikut modelnya :

alog bp = p. alog b

dengan syarat a > 0, a \ne 1, b > 0

7. Perpangkatan Bilangan Pokok Logaritma

Suatu logaritma dengan nilai bilangan pokoknya merupakan suatu eksponen (pangkat) dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi bilangan pembagi. Berikut modelnya:

^{a^p} log b = \frac{1}{p} ^a log b

dengan syarat a > 0, a \ne 1.

8. Bilangan Pokok Logaritma Sebanding dengan Perpangkatan Numerus

Suatu logaritma dengan nilai numerus-nya merupakan suatu eksponen (pangkat) dari nilai bilangan pokoknya memiliki hasil yang sama dengan nilai pangkat numerus tersebut. Berikut model sifat logaritma nya:

alog ap = p

dengan syarat a > 0 dan a \ne 1.

9. Perpangkatan Logaritma

Suatu bilangan yang memiliki pangkat berbentuk logaritma, hasil pangkatnya adalah nilai numerus dari logaritma tersebut. Berikut modelnya:

a^{^a log m} = m

dengan syarat a > 0, a \ne 1, m > 0.

10. Mengubah Basis logaritma

Suatu logaritma dapat dipecah menjadi perbandingan dua logaritma sebagai berikut:

^p log q = \frac{^a log p}{^a log q}

dengan syarat a > 0, a \ne 1, p > 0, q > 0

Logaritma: Pengertian, Rumus, Sifat, Contoh Soal dan Pembahasan 217
sifat sifat logaritma

 C. Contoh Soal Logaritma

Contoh Soal Logaritma 1
Diketahui 3log 5 = x dan 3log 7 = y. maka, nilai dari 3log 245 1/2 adalah … ?         
Pembahasan 1
3log 245 ½ = 3log (5 x 49) ½
3log 245 ½ = 3log ((5) ½ x (49) ½)
3log 245 ½ = 3log (5) ½ + 3log (72½
3log 245 ½ = \frac{1}{2} ( 3log 5 + 3log 7)
3log 245 ½ = \frac{1}{2} (x + y)
Jadi, nilai dari 3log 245 1/2 adalah \frac{1}{2} (x + y).
Contoh Soal Logaritma 2
Jika b = a4, nilai a dan b positif, maka nilai alog b – blog a adalah …?            
Pembahasan 2
Diketahui bahwa b = a4, maka dapat disubstitusi kedalam perhitungan:
alog b – blog a = alog a4  – ^{a^4} log a
alog b – blog a = 4 (alog a) – \frac{1}{4}alog a)
alog b – blog a = 4 – \frac{1}{4}
alog b – blog a = 3 \frac{3}{4}
Jadi, nilai dari alog b – blog a pada soal tersebut adalah 3 \frac{3}{4}.
Contoh Soal Logaritma 3
Jika ³log 2 = a, maka ³log 6 =….      
Pembahasan 3

³log 6 ³log (2x3)
=
³log 2+³log 3    
 = a+1

Komentar

Postingan populer dari blog ini

Mengenal Bilangan Berpangkat Matematika